1. Mol. Neurod. 2017
    Mol. Neurod. 2017
    Background: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant protein. Here, we investigated the presence of bioenergetic defects in the brain of transgenic mice expressing human mutant TDP-43 (TDP-43A315T mice), patient derived fibroblasts, and human cells expressing mutant forms of TDP-43. Methods: In the brain of TDP-43A315T mice, TDP-43 mutant fibroblasts, and cells expressing mutant TDP-43, we tested several bioenergetics parameters, including mitochondrial respiration, ATP synthesis, and calcium handling. Differences between mutant and control samples were evaluated by student t-test or by ANOVA, followed by Bonferroni correction, when more than two groups were compared. Mitochondrial localization of TDP-43 was investigated by immunocytochemistry in fibroblasts and by subcellular fractionation and western blot of mitochondrial fractions in mouse brain. Results: We did not observe defects in any of the mitochondrial bioenergetic functions that were tested in TDP-43 mutants. We detected a small amount of TDP-43A315T peripherally associated with brain mitochondria. However, there was no correlation between TDP-43 associated with mitochondria and respiratory chain dysfunction. In addition, we observed increased calcium uptake in mitochondria from TDP-43A315T mouse brain and cells expressing A315T mutant TDP-43. Conclusions: While alterations of mitochondrial morphology and dynamics in TDP-43 mutant neurons are well established, the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants, in vitro and in vivo. On the other hand, the increase in mitochondrial calcium uptake in A315T TDP-43 mutants was an intriguing finding, which needs to be investigated further to understand its mechanisms and potential pathogenic implications.
  1. Mol Cell Neurosci. 2013
    Mol Cell Neurosci. 2013
    Mitochondrial dysfunction leading to deficits in energy production, Ca(2+) uptake capacity, and free radical generation has been implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS) caused by mutations in Cu,Zn superoxide dismutase (SOD1). Numerous studies link UCP2, a member of the uncoupling protein family, to protection of neurons from mitochondrial dysfunction and oxidative damage in various mouse models of acute stress and neurodegeneration, including Parkinson's disease. Here, we tested the potential neuroprotective effects of UCP2 and its ability to modulate mitochondrial function, in the G93A mutant SOD1 mouse model of familial ALS. Disease phenotype, mitochondrial bioenergetics, and Ca(2+) uptake capacity were investigated in the central nervous system of double transgenic mice, expressing both human mutant G93A SOD1 and human UCP2 (hUCP2). Unexpectedly, hUCP2 expression accelerated the disease course of SOD1 mutant mice. In addition, we did not observe a classical uncoupling effect of hUCP2 in G93A brain mitochondria, although we did detect a decrease in reactive oxygen species (ROS) production from mitochondria challenged with the respiratory chain inhibitors rotenone and antimycin A. We also found that mitochondrial Ca(2+) uptake capacity was decreased in the double transgenic mice, as compared to G93A mice. In summary, our results indicate that the neuroprotective role of UCP2 in neurodegeneration is disease-specific and that, while a mild uncoupling by UCP2 in brain mitochondria may protect against neurodegeneration in some injury paradigms, the mitochondrial damage and the disease caused by mutant SOD1 cannot be ameliorated by UCP2 overexpression.
  1. J Biol Chem. 2007
    J Biol Chem. 2007
    Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.